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For classical Hamiltonian systems, the adiabatic condition may fail at some critical points. However, the
breakdown of the adiabatic condition does not always cause the adiabatic evolution to be destroyed. In this
paper, we suggest a supplemental condition of the adiabatic evolution for the fixed points of classical Hamil-
tonian systems when the adiabatic condition breaks down at the critical points. As an example, we investigate
the adiabatic evolution of the fixed points of a classical Hamiltonian system which has a number of
applications.
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I. INTRODUCTION

Adiabaticity is an interesting concept in physics both for
theoretical studies and experimental practicesf1–5g. Accord-
ing to the adiabatic theoremf1g, if the parameters of the
system vary with time much more slowly than the intrinsic
motion of the system, the system will undergo adiabatic evo-
lution. For a classical system, adiabatic evolution means that
the action of the trajectory remains invariant. For a quantum
system, an initial nondegenerate eigenstate continues to be
an instantaneous eigenstate when the Hamiltonian changes
slowly compared to the level spacingsf1g. Hence, the adia-
batic evolution has been employed as an important method
of preparation and control of quantum statesf6–9g.

However, a problem may arise when the eigenstates acci-
dentally become degenerate at a critical point, i.e., when the
level spacing tends to zero at a critical point. For a classical
system, it corresponds to the frequency of the fixed point
being zero at the critical point. The adiabatic condition is not
satisfied at the critical point because the typical time of the
intrinsic motion of the system becomes infinite. Can adia-
batic evolution still hold up when the adiabatic condition
breaks down at the critical point?

Our motivation derives from practical applications in cur-
rent pursuits of adiabatic control of Bose-Einstein conden-
satessBECsd f10g, which can often be accurately described
by the nonlinear Schrödinger equation. Here the nonlinearity
is from a mean-field treatment of the interactions between
atoms. Difficulties arise not only from the lack of unitarity in
the evolution of the states, but also from the absence of the
superposition principle. This was recently addressed for
BECs in some specific casesf11,12g. But then, however, for
such systems, only a finite number of levels is concerned.
The nonlinear Schrödinger equation of the system with a
finite number of levels can be translated into a mathemati-
cally equivalent classical Hamiltonian system. The evolution
of an eigenstate just corresponds to the evolution of a fixed
point of the classical Hamiltonian system. Then, the acciden-
tal degeneracy of eigenstates is just translated into an acci-
dental collision of the fixed points. The latter is quite a well-
known subject and has been studied widely at least as a
purely mathematical problemf13g. Hence, our concern here
is only focused on the adiabatic evolution of the fixed points
of classical Hamiltonian systems.

In this paper, we present a supplemental condition of the
adiabatic evolution for the fixed points of classical Hamil-
tonian systems when the adiabatic condition breaks down at
some critical points in the terms of topology. As an example,
we investigate the adiabatic evolution of the fixed points of a
classical Hamiltonian system which has a number of practi-
cal interests. We show that the adiabatic condition will break
down at bifurcation points of the fixed points. But the adia-
batic evolution is destroyed only for the limit point. For the
branch process, the adiabatic evolution will hold, and the
corrections to the adiabatic approximation tend to zero with a
power law of the sweeping rate.

II. SUPPLEMENTAL ADIABATIC CONDITION FOR THE
FIXED POINTS OF CLASSICAL HAMILTONIAN

SYSTEMS

For clarity and simplicity, we consider a one-freedom
classical HamiltonianHsp,q;ld with canonically conjugate
coordinatessp,qd wherel is a parameter of this system. The
equations of motion are

q̇ =
]H

]p
, ṗ = −

]H

]q
. s1d

We can find two kinds of trajectories in the phase space for
the system: fixed points and closed orbits. The fixed points
are the solutions of Eqs.s1d when their right-hand sides are
zero. For a Hamiltonian system, there are only two kinds of
the fixed points: elliptic pointssstable fixed pointsd and hy-
perbolic pointssunstable fixed pointsd. The closed orbits are
around each of the elliptic points. We denote the fixed points
by zi

*sp,qd si =1,2, . . . ,ld, where l is the total number of
fixed points.

The action of a trajectory is defined as

I =
1

2p
R pdq, s2d

where the integral is along the closed orbit. Obviously, the
action of a fixed point is zero. The action is invariant when
the system undergoes adiabatic evolution.

According to the adiabatic theoremf1g, the adiabatic con-
dition can be expressed as
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2p

V

dl

dt
! 1, s3d

whereV is the frequency of the fixed point. If this condition
holds, the system will undergo adiabatic evolution, and keep
the action nonvarying. IfVÞ0, the condition can always be
satisfied.

We can obtain the frequencies of the fixed points by lin-
earized the equations of motion. Let us define the Jacobian
matrix as

J =1
]2H

]q2

]2H

]q]p

]2H

]q]p

]2H

]p2
2 . s4d

It is well known that whenudetsJduz* .0, the fixed point is a
stable fixed pointselliptic pointd; when udetsJduz* ,0, the
fixed point z* is an unstable fixed pointshyperbolic pointd.
The point with udetsJduz* =0 is a degenerate point at which
the stability of the system is not determined.

For a stable fixed pointz* , the frequency of this fixed
point is

V0 = ÎudetsJduz* . s5d

Obviously,V0 depends on the parameterl.
Supposing at a critical point, namelyl=lc, we have

V0slcd=0. Therefore, the conditions3d will break down at
the point. We want to know what will happen when the adia-
batic condition fails.sWill the adiabatic evolution of the
fixed point be destroyed when the adiabatic condition does
not hold?d

In fact, if udetsJduz* =0, the pointz* is a bifurcation point at
which the fixed point will collide with the other fixed points
f13,14g. Hence, the breakdown of the adiabatic condition is
equivalent to collision of the fixed pointssequivalent to ac-
cidental degeneracy of eigenstates of a corresponding quan-
tum systemd. In the collision process, fixed points may anni-
hilate or merge into a stable fixed point. The collision of the
fixed points can be described clearly in the terminology of
topology f14g.

The equations of motion just define a tangent vector field
fsp,qd=s]H /]p,−]H /]qd on the phase space. Obviously,
the fixed pointszi

*si =1,2, . . . ,ld are the zero points of the
vector field, i.e.,fsz*d=0. We know that the sum of the
topological indices of the zero points of the tangent vector
field is the Euler number of the phase space which is a to-
pological invariantf15g. For a Hamiltonian system, the topo-
logical index for a stable fixed point is +1 and for an unstable
fixed point it is −1.

Indeed, if the fixed point is a regular pointsnot a degen-
erate pointd, i.e., udetsJduz* Þ0, the topological index of the
fixed point can be determined by the determinant of the Jaco-
bian matrix defined by Eq.s4d f14,15g. If udetsJduz* .0, z* is
a stable fixed point and the topological index is +1;
if udetsJduz* ,0, it is an unstable fixed point and the index
is −1.

If udetsJduz* =0, i.e., if z* is a bifurcation point, the topo-
logical index of this point seems to be not determined. As we
have shown before, the point is just the critical point of adia-
batic evolution, corresponding to collision of the fixed
points.

However, because the sum of the topological indices is a
topological invariant, the topological index is conserved in a
collision process of the fixed points. Therefore, the topologi-
cal index of the bifurcation point can be determined by the
sum of the indices of the fixed points involved in a collision.
So, if the topological index of the bifurcation point is not
zero, it is still a fixed point after collision. But if the topo-
logical index of the bifurcation point is zero, the bifurcation
point will not be a fixed point after collision.

Now, let us imagine what will happen when a fixed point
is destroyed by a collision process. Because there are only
two kinds of trajectories for a classical Hamiltonian system
sfixed points and closed orbits around each of the stable fixed
pointd, when a fixed point is destroyed, it will form a closed
orbit around the nearest stable fixed point. The action of the
new orbit must be proportional to the distance between the
critical point and the nearest stable fixed point. This sudden
change of actionsfrom zero to finited is the so-called “adia-
batic tunneling probability” which has been studied in Refs.
f16,17g. On the other hand, if the topological index of the
bifurcation point is −1, i.e., it is an unstable fixed point after
the collision, we cannot expect the adiabatic evolution to
continue after collision.

But if the topological index of the bifurcation point is +1,
it is still a stable fixed point after the collision, or in other
words, the stable fixed point survives after collision. For
such a case, the adiabatic evolution will not be destroyed.

From the above discussion, it is clear that when the adia-
batic condition given by Eq.s3d does not hold at a critical
point with V0=ÎudetsJduz* slcd=0, the system will still un-
dergo adiabatic evolution if the topological index of the fixed
point z*slcd is +1. On the contrary, if the topological index of
the pointz*slcd is zero or −1, the adiabatic evolution will be
destroyed.

Hence, we get a supplemental condition of the adiabatic
evolution of the fixed points for a classical Hamiltonian sys-
tem when the adiabatic condition breaks down at a critical
point. When the adiabatic condition is not satisfied at a criti-
cal point, the topological property of the bifurcation point
plays an important role in judging whether the system will
undergo adiabatic evolution over this critical point: if the
index of the degenerate pointz*slcd is +1, the adiabatic evo-
lution will hold. If the index of the pointz*slcd is zero or −1,
the adiabatic evolution will not hold.

III. A PARADIGMATIC EXAMPLE AND APPLICATION

As a paradigmatic example, we consider the following
system:

Hsz,u,l,gd = − Î1 − z2 cosu −
l

2
z2 + gz, s6d

in which sz,ud are canonically conjugate coordinates, and

l ,g are two parameters. The equations of motion areu̇
=]H /]z, ż=−]H /]u; these yield
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u̇ =
z

Î1 − z2
cosu − lz+ g, s7d

ż= − Î1 − z2 sinu. s8d

This classical system can be obtained from a quantum non-
linear two-level system, which may arise in a mean-field
treatment of a many-body system where the particles pre-
dominantly occupy two energy levels. For example, this
model arises in the study of the motion of a small polaron
f18g, a Bose-Einstein condensate in a double-well potential
f19–21g or in an optical latticef22,23g, for two coupled
Bose-Einstein condensatesf24,25g, or for a small capaci-
tance Josephon junction where the charging energy may be
important. This quantum nonlinear two-level model has also
been used to investigate the spin tunneling phenomena re-
cently f26g.

The fixed points of the classical Hamiltonian system are
given by the following equations:

u* = 0, p, g − lz* +
z*

Î1 − z*2
cosu* = 0. s9d

The number of fixed points depends on the nonlinear param-
eter l. For weak nonlinearity,lø1, there exist only two
fixed points, corresponding to the local extreme points of the
classical Hamiltonian. They are elliptic points located on
lines u* =0 and p, respectively, each being surrounded by
closed orbits. For strong nonlinearity,l.1, two more fixed
points appear on the lineu* =0 in the windows −gc,g
,gc; one is elliptic and the other is hyperbolic as a saddle
point of the classical Hamiltonian, wheregc=sl2/3−1d3/2. In
the following, we only consider the cases in the region −gc
,g,g.

We can obtain the frequencies of the fixed points by lin-
earized Eqs.s7d and s8d. For the elliptic fixed points on line
u* =0, the frequencies are equal. They are

V0 = Î1 − ls1 − z*2d3/2. s10d

Obviously, if z* =zc
* =Î1−s1/ld2/3, the frequencies will be

zero, i.e.,V0szc
*d=0. From Eq.s9d, we can determine, when

l=lc=sg2/3+1d3/2, that one of the elliptic fixed points will
be sz* =zc

* ,u* =0d. At this point, the adiabatic condition will
break down.

Hence, if we start from this elliptic fixed point on line
u* =0 at l=l0.1, and l changes with time asl=l0−at
fkeeping g invariant in the window −gcsl0d,g,gcsl0dg,
the adiabatic conditions3d will break down at the pointzc

*

when l reacheslc becauseV0=0. We want to know what
will happen when the adiabatic condition is not satisfied.
sWill the adiabatic evolution be destroyed when the adiabatic
condition does not hold?d There are two different cases to
discuss:gÞ0 andg=0.

Case 1sgÞ0d: For convenience, we chooseg=0.2 and
l0=2. We start at the elliptic fixed pointfz* =z*sl0d ,u* =0g
andl varies with very smalla. At the beginning, the system
follows the z*flstdg adiabatically. But whenl reacheslc

=sg2/3+1d3/2, the adiabatic evolution is destroyed with a
jump of actionsthe action changes to a finite value from zero
suddenlyd at the pointzc

*s<0.5048d. Figure 1sad shows this
process. Obviously, the breakdown of the adiabatic condition
leads to the destructon of the adiabatic evolution.

Case 2sg=0d: From Eqs.s6d and s9d, we can have two
elliptic fixed points on lineu* =0 for l.1,

z±
* = ± Î1 − 1/l2, u* = 0, V0 = Îlsl2 − 1d, s11d

and forlø1, there is only one fixed point,

z* = 0, u* = 0, V0 = Î1 − l. s12d

Obviously, for zc
* =0 and lc=1.0, V0=0, so the adiabatic

condition cannot be satisfied. We integrate the classical equa-
tions of the Hamiltonian systems6d, with the initial condition
l0=2, z0=z+

* sl0d, andu*s0d=0. Figure 1sbd shows the time

FIG. 1. Time evolution ofzstd initially on the
elliptic fixed pointz*sl0d. sad for g=0.2,l0=2.0.
The solid line denotes the time evolution ofzstd
for a=0.001 and the dotted line fora=0.000 01.
The dashed line refers to the trajectory of the hy-
perbolic point. sbd for g=0, l0=2.0. The solid
line denotes the time evolution ofzstd for a
=0.000 001. The dotted line refers to the trajec-
tory of the hyperbolic point. The dashed line re-
fers to the trajectory of another elliptic point.

TOPOLOGY HIDDEN BEHIND THE BREAKDOWN OF… PHYSICAL REVIEW E 71, 016607s2005d

016607-3



evolution of this fixed point for a very small sweeping ratea.
The final state is a very small oscillation around the fixed
point sz* =0,u* =0d. In Fig. 2, we plot the dependency of the
small oscillation amplituded on the sweeping ratea. From
this figure, it is clear to see that the amplitude of the small
oscillation will tend to zero with the sweeping rate decreas-
ing as a power law:d=0.73a1/2. Therefore, for this case,
the system will evolve adiabatically and keep the action un-
changing for the whole time if the sweeping rate is small
enough, even whenl crosses the critical pointlc=1, at
which V0szc

*d=0, i.e., even though the adiabatic condition is
not satisfied whenl crosses the pointlc=1, the system is
still undergoing adiabatic evolution.

In fact, if we make the series expansion of the Hamil-
tonian s6d around the critical point, the system can be ap-
proximated to a double-well systemf20g. Therefore, the phe-
nomenon of case 2 can be illustrated by the standard double-
well model. Considering a particle in a double well, the
system is described by the HamiltonianH=1/2p2−1/2mx2

+1/4x4. For m.0, it has two stable fixed pointssx,pd
=sÎm ,0d and sx,pd=s−Îm ,0d, and an unstable fixed point
sx,pd=s0,0d; for m,0, it has a single stable fixed point
sx,pd=s0,0d. At the critical point m=0, three fixed points
merge into a stable fixed point. As the parameterm varies
from +1 to −1, the system goes from a double well to a
single well. The stable fixed points are just the bottom of the
wells, and the unstable point is just the saddle point of the
double well. If the particle is at the fixed pointsÎm ,0d at the
beginning, i.e., if the particle stays at the bottom of one well,
then letm vary very slowly. At the critical pointm=0, the
two wells merge into a single well. At this time, the bifurca-
tion point is sx,pd=s0,0d, which is the bottom of the single
well. So if m varies very slowly, one can imagine that the
particle will stay at the bottom of the well all the time, even
when the system goes from a double well to a single onesat
this time the adiabatic condition does not hold but the bifur-
cation point is still a stable fixed point, because the bifurca-
tion point still corresponds to the bottom of the welld.

As we have discussed in Sec. II, the breakdown of the
adiabatic conditionsV0=0d corresponds to the trajectory bi-

furcation, i.e., the pointzc
* is just a bifurcation point of the

fixed points. The properties of the fixed points are deter-
mined by the following Jacobian:

D = det*1
]f1

]z

]f2

]z

]f1

]u

]f2

]u
2*

sz* ,0d

, s13d

wherefsz,ud=s]H /]z,−]H /]ud. If the JacobianDÞ0, the
zero pointsfixed pointd is a regular point. But whenD=0,
the zero point is a bifurcation point.

There are two kinds of bifurcation points: limit points and
branch points. The limit point satisfies thatD=0 but

D1 = det*1
]f1

]l

]f2

]l

]f1

]u

]f2

]u
2*

szc
* ,0d

Þ 0,

which corresponds to generation and annihilation of the fixed
points.

If uDuszc
* ,0d= uD1uszc

* ,0d=0, the pointszc
* ,0d is a branch point.

The branch point corresponds to the branch process of the
fixed points. The directions of all branch curves are deter-
mined by the equationsf14g

A
d2z

dz2 + 2B
dz

dz
+ C = 0 s14d

or

C
d2z

dz2 + 2B
dz

dz
+ A = 0, s15d

whereA, B, andC are three constants.z corresponds tol or
g, respectively. Different solutions of the above equations
correspond to different branch processes.

For the zero pointsz* ,0d, i.e., the fixed point on lineu*

=0, we can obtainD=−Î1−z*2uV0
2usz* ,0d. Obviously, when

FIG. 2. The dependency of the oscillation am-
plitude of the final state on the sweeping ratea
for the Case 2. The initial state and parameters
are the same as in Fig. 1sbd except for the sweep-
ing rate. The solid quadrangles are our numerical
calculations. The solid line of the inset is the
function 0.73a1/2.
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V0=0, D=0, the critical pointszc
* ,0d is a bifurcation point, at

which the adiabatic condition fails.
For the case 1, we can find at the pointzc

* the Jacobian
D=−Î1−z2uV0

2uszc
* ,0d=0, but D1= u−sÎ1−z2uszc

* ,0dÞ0. This
point is a limit point which corresponds to annihilating zero
points. At this point, the elliptic point annihilates simulta-
neously with a hyperbolic point. In Fig. 1sad, the dashed lines
are the trajectory of the hyperbolic point. Apparently, the
elliptic point evolves adiabatically until it annihilates with
the hyperbolic point atzc

* . After this annihilation, the elliptic
point turns to an ordinary closed orbit with a nonzero action,
so the adiabatic evolution is destroyed. The annihilation pro-
cess of the fixed points of the systems6d has also been dis-
cussed in Ref.f27g in detail.

For the case 2, at the pointzc
* =0, the Jacobian determinant

D=0, andD1= u−zÎ1−z2uszc
* ,0d=0. This is a branch process of

the fixed points. We can prove that for this caseA=C=0, so
the solutions of Eqs.s14d and s15d give two directions:
dz/dl=0 anddl /dz=0. The branch process corresponds to
the merging process. At this branch point, three fixed
points—two elliptic points and one hyperbolic point—merge
together. One can see this point in Fig. 1sbd, in which the
dotted line is the trajectory of the hyperbolic point, and the
dashed line corresponds to the trajectory of another elliptic
point. Since the total topological index is invariant, the three
fixed points merge to one point with index +1, i.e., they
merge to an elliptic point. The elliptic point evolves adiabati-
cally until it reaches the critical pointzc

* , at which three fixed
points merge to one elliptic point. Therefore, after the branch
process, the elliptic point turns to a new elliptic point, the
action remains zero, and the adiabatic evolution still holds.

From the above discussion, we see that the adiabaticity
breaks down at bifurcation points of the fixed points, but
only for the limit point is the adiabatic evolution destroyed
scase 1d, while for this case the two fixed points annihilate.
For case 2, three fixed points merge to one, because the
critical point szc

* ,0d is still a stable fixed point and the adia-
batic evolution remains with action zero.

The phenomena discussed above can occur for the adia-
batic change ofg with l fixed. On the other hand, the Hamil-
tonian s6d is invariant under the transformationsl→−l, u
→u+p, andt→−t. Hence, the phenomena can also be found
under such transformations.

IV. CONCLUSION

In summary, at some critical points, the adiabatic condi-
tion fails, but the adiabatic evolution may not always be
broken. We find that the topological property of the critical
point plays an important role for adiabatic evolution of the
fixed points when the adiabatic condition does not hold. If
the topological index of the critical point is +1, the adiabatic
evolution of the fixed point will not be destroyed. On the
contrary, if the index of the critical point is zero or −1, the
adiabatic evolution will be destroyed. As a paradigmatic ex-
ample, we investigated the adiabatic evolution of a classical
Hamiltonian system which has a number of practical inter-
ests. For this system, the adiabaticity breaks down at bifur-
cation points of the fixed points, but only for the limit point
is the adiabatic evolution destroyed. For the branch process,
the adiabatic evolution will hold, and the corrections to the
adiabatic approximation tend to zero with a power law of the
sweeping rate.

In general, the corrections to the adiabatic approximation
are exponentially small in the adiabaticity parameter, both
for a quantum system and a classical systemf1–3g. It is
particularly interesting that the corrections of the adiabatic
approximation may be a power lawse.g., for the case 2d. The
power-law corrections to the adiabatic approximation have
also been found in the nonlinear Landau-Zener tunneling
f16g. In Ref. f16g, the authors found that when the nonlinear
parameter is smaller than a critical value, the adiabatic cor-
rections are exponentially small in the adiabatic parameter,
but when the nonlinear parameter is equal to the critical
value, the adiabatic corrections are a power law of the adia-
batic parameter. Furthermore, if the nonlinear parameter is
larger than the critical value, the so-called nonzero adiabatic
tunneling will occurf16,17g. Indeed, the cases for which the
corrections to the adiabatic approximation are not exponen-
tial law with the adiabatic parameter correspond to the col-
lision of fixed points.
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