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Topology hidden behind the breakdown of adiabaticity
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For classical Hamiltonian systems, the adiabatic condition may fail at some critical points. However, the
breakdown of the adiabatic condition does not always cause the adiabatic evolution to be destroyed. In this
paper, we suggest a supplemental condition of the adiabatic evolution for the fixed points of classical Hamil-
tonian systems when the adiabatic condition breaks down at the critical points. As an example, we investigate
the adiabatic evolution of the fixed points of a classical Hamiltonian system which has a number of

applications.
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[. INTRODUCTION In this paper, we present a supplemental condition of the

Adiabaticity is an interesting concept in physics both foradlgbatlc evolution for the f|.xed pomts (_Jf classical Hamil-
theoretical studies and experimental practidess]. Accord- ~ tonian systems .vvhe.n the adiabatic condition breaks down at
ing to the adiabatic theorerft], if the parameters of the SOme critical points in the terms of topology. As an example,
system vary with time much more slowly than the intrinsic We investigate the adiabatic evolution of the fixed points of a
motion of the system, the system will undergo adiabatic evoclassical Hamiltonian system which has a number of practi-
lution. For a classical system, adiabatic evolution means thatal interests. We show that the adiabatic condition will break
the action of the trajectory remains invariant. For a quantundown at bifurcation points of the fixed points. But the adia-
system, an initial nondegenerate eigenstate continues to latic evolution is destroyed only for the limit point. For the
an instantaneous eigenstate when the Hamiltonian changesanch process, the adiabatic evolution will hold, and the
slowly compared to the level spacinffs|. Hence, the adia- corrections to the adiabatic approximation tend to zero with a
batic evolution has been employed as an important methogower law of the sweeping rate.
of preparation and control of quantum sta6s9|.

However, a problem may arise when the eigenstates acci!l. SUPPLEMENTAL ADIABATIC CONDITION FOR THE
dentally become degenerate at a critical point, i.e., when the  FIXED POINTS OF CLASSICAL HAMILTONIAN
level spacing tends to zero at a critical point. For a classical SYSTEMS
system, it corresponds to the frequency of the fixed point F larit d simplicit id freed
being zero at the critical point. The adiabatic condition is not or clanty and simp 'C'_y’ we consider a one-ireedom
satisfied at the critical point because the typical time of thef'@ssical HamiltoniarH(p, ;) with canonically conjugate
intrinsic motion of the system becomes infinite. Can adia-c00rdinatesp,q) where is a parameter of this system. The
batic evolution still hold up when the adiabatic condition €quations of motion are

breaks down at the critical point?
LS . . L . . oH . oH
Our motivation derives from practical applications in cur- q=—, =——. (1)
rent pursuits of adiabatic control of Bose-Einstein conden- p o

sates(BECs [10], which can often be accurately described We can find two kinds of trajectories in the phase space for

by the nonlinear Schrédinger equation. Here the nonlinearity, o gystem: fixed points and closed orbits. The fixed points
is from a mean-field treatment of the interactions betweer) . 1o <olutions of Eqg1) when their right-hand sides are

atoms. Difficulties arise not only from the lack of unitarity in 7610, For a Hamiltonian svstem. there are onlv two Kinds of
the evolution of the states, but also from the absence of thﬁ1e f}xed points: elliptic pc})/int$st:able fixed poir¥Dsand hy-

superposition principle. This was recently addressed fo . : . . X
: e perbolic points(unstable fixed poinjs The closed orbits are
BECs in some specific casgsl,12. But then, however, for round each of the elliptic points. We denote the fixed points

such systems, only a finite number of levels is concerned. ™« . )
The nonlinear Schrédinger equation of the system with ?y zi(p,_q) (i=1,2,...1), wherel is the total number of
finite number of levels can be translated into a mathematitxed Points. . L

cally equivalent classical Hamiltonian system. The evolution | N€ action of a trajectory is defined as
of an eigenstate just corresponds to the evolution of a fixed 1

point of the classical Hamiltonian system. Then, the acciden- I = ng pda, (2

tal degeneracy of eigenstates is just translated into an acci-

dental collision of the fixed points. The latter is quite a well- where the integral is along the closed orbit. Obviously, the
known subject and has been studied widely at least as action of a fixed point is zero. The action is invariant when
purely mathematical problefii3]. Hence, our concern here the system undergoes adiabatic evolution.

is only focused on the adiabatic evolution of the fixed points  According to the adiabatic theore], the adiabatic con-
of classical Hamiltonian systems. dition can be expressed as
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27 d\ If detJ)|s=0, i.e., ifZ is a bifurcation point, the topo-
QO dt <1, ) logical index of this point seems to be not determined. As we
have shown before, the point is just the critical point of adia-

whereQ is the frequency of the fixed point. If this condition Patic evolution, corresponding to collision of the fixed
holds, the system will undergo adiabatic evolution, and keef°!Nts-

the action nonvarying. 12 #0, the condition can always be . {OWever, because the sum of the topological indices is a
satisfied. topological invariant, the topological index is conserved in a

We can obtain the frequencies of the fixed points by Iin_collision process of the fixed points. Therefore, the topologi-

earized the equations of motion. Let us define the JacobiacaI index of the bifurcation point can be determined by the
Matrix as q : Yum of the indices of the fixed points involved in a collision.

So, if the topological index of the bifurcation point is not
PH  PH zero, it is still a fixed point after collision. But if the topo-
-— logical index of the bifurcation point is zero, the bifurcation
| 9 dqop point will not be a fixed point after collision.

J= PH  PH | (4) Now, let us imagine what will happen when a fixed point
0o 902 is destroyed by a collision process. Because there are only

qop p two kinds of trajectories for a classical Hamiltonian system
(fixed points and closed orbits around each of the stable fixed

point), when a fixed point is destroyed, it will form a closed
orbit around the nearest stable fixed point. The action of the
new orbit must be proportional to the distance between the
critical point and the nearest stable fixed point. This sudden

It is well known that when detJ)| >0, the fixed point is a
stable fixed point(elliptic point); when detJ)|<0, the
fixed pointZz' is an unstable fixed poirthyperbolic point.
The point with detJ)|=0 is a degenerate point at which

the stability of the system is not determined. o change of actiorifrom zero to finite is the so-called “adia-
For a stable fixed poing,, the frequency of this fixed p4tic tunneling probability” which has been studied in Refs.
point is [16,17. On the other hand, if the topological index of the
oy bifurcation point is -1, i.e., it is an unstable fixed point after
Qo= y|de)]7 . ) the collision, we cannot expect the adiabatic evolution to
continue after collision.
But if the topological index of the bifurcation point is +1,
it is still a stable fixed point after the collision, or in other
words, the stable fixed point survives after collision. For

Obviously, Q) depends on the parameter

Supposing at a critical point, namely=\., we have
QOp(N\o)=0. Therefore, the conditiofB) will break down at
the_pomt. V_\/_e want to kn_ow what \.N'" hgppen When the adia-g o1, 5 case, the adiabatic evolution will not be destroyed.
batic condition fails.(Will the adiabatic evolution of the

. . ) ) o From the above discussion, it is clear that when the adia-
fixed point be destroyed when the adiabatic condition doeﬁatic condition given by Eq(3) does not hold at a critical
nOIInh?all?:? if |detJ)|» =0, the pointz" is a bifurcation point at point with Qo= delJ)|;:,)=0, the system wil sfill un-
' zoo P P dergo adiabatic evolution if the topological index of the fixed

which the fixed point will collide with the other fixed points . : . S
[13,14]. Hence r;)he breakdown of the adiabatic congition ispomtz*()\c) is +1. On the contrary, if the topological index of

equivalent to collision of the fixed pointgquivalent to ac- the fomté*()\"') Is zero or —1, the adiabatic evolution will be
cidental degeneracy of eigenstates of a corresponding quaﬂ_ei'roye : i | al diti f the adiabati
tum system In the collision process, fixed points may anni- ence, we get a supplemental condition of the adiabatic
hilate or merge into a stable fixed point. The collision of theevolutlon of the fixed points for a classical Hamiltonian sys-

fixed points can be described clearly in the terminology Oftem when the adla'batlc_ cond|t|.o.n b.reaks doyvn ata Cm'?‘f"l
topology[14]. point. When the adiabatic condition is not satisfied at a criti-

The equations of motion just define a tangent vector fieloCal point,_the topologica_l property of the bifurcation poin_t
¢(p,q)=(dH/dp,—dH/dg) on the phase space. Obviously, plays an Important role N judging whetht_a_r the system will
the fixed pointszi*(i:l,z, ...]) are the zero points of the _undergo adiabatic evolut|o.n over this crltlcall point: if the

tor field, i.e..¢(Z)=0. We know that the sum of the index of the degenerate point(\.) is +1, the adiabatic evo-
vector held, 1.e., ' . lution will hold. If the index of the point(\.) is zero or -1,
topological indices of the zero points of the tangent vector,

field is the Euler number of the phase space which is a tot-he adiabatic evolution will not hold.

pological invarianf15]. For a Hamiltonian system, the topo-  |||. A PARADIGMATIC EXAMPLE AND APPLICATION
logical index for a stable fixed point is +1 and for an unstable
fixed point it is —1.

Indeed, if the fixed point is a regular poifriot a degen-
erate poinf, i.e., detJ)| # 0, the topological index of the
fixed point can be determined by the determinant of the Jaco-
bian matrix defined by Eq4) [14,15. If detJ)|;>0,Z is
a stable fixed point and the topo'ogica| index is +1, in which (Z, 0) are Canonica"y Conjugate COOI’dinates,_ and
if detJ)|»<0, it is an unstable fixed point and the index \,y are two parameters. The equations of motion dre
is —1. =0H/d9z,z=-9H/96; these yield

As a paradigmatic example, we consider the following
system:

— A
H(z, 0,)\,7):—\"1—220050—522+ vz, (6)
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104 : : i A i . | | FIG. 1. Time evolution of(t) initially on the
20 18 16 14 12 elliptic fixed pointz' (). (a) for y=0.2,,0=2.0.
A The solid line denotes the time evolution zif)
@) for «=0.001 and the dotted line far=0.000 01.
The dashed line refers to the trajectory of the hy-
1.0 perbolic point.(b) for y=0, \g=2.0. The solid
T ———  0=0.000001 line denotes the time evolution aft) for «
0‘5'_ =0.000 001. The dotted line refers to the trajec-
N 00T \ tory of the hyperbolic point. The dashed line re-
] ! fers to the trajectory of another elliptic point.
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(b)
.z Qo=V1-M1-2%)3%2 10
0= 22c036—>\2+ 7, (7) 0=\ ( ) (10
Vi- Obviously, if Z=z,=\1-(1/\)??, the frequencies will be
_ - Zero, i.e.,Qo(z;):O. From Eq.(9), we can determine, when
z=-1-7sing. (8)  N=\=(¥*2+1)%?, that one of the elliptic fixed points will

This classical system can be obtained from a quantum no
linear two-level system, which may arise in a mean-field ) ) L . )
treatment of a many-body system where the particles pre-, Hence, if we start from this elllpt_lc f|_xed point on line
dominantly occupy two energy levels. For example, this? =0 @ A=Ao>1, and) changes with time aga=h,-at
model arises in the study of the motion of a small polaronK€€PINg y invariant in the window y(ho) <¥< (o),
[18], a Bose-Einstein condensate in a double-well potentiaih® adiabatic conditiort3) will break down at the point
[19-21 or in an optical lattice[22,23, for two coupled When\ reaches\; because,=0. We want to know what
Bose-Einstein condensat¢®4,25, or for a small capaci- W|II_ happen Whgn the a_ldlabatlc condition is not sat_lsfled_.
tance Josephon junction where the charging energy may gawvill Fhe adiabatic evolution be destroyed yvhen the adiabatic
important. This quantum nonlinear two-level model has alsgondition does not hold?There are two different cases to
been used to investigate the spin tunneling phenomena réiscuss:y#0 andy=0. ,
cently[26]. Case 1(y#0): For convenience, we cihoc*)aezo.z* and
The fixed points of the classical Hamiltonian system areho=2. We start at the elliptic fixed poiriz’ =z (\o), 6 =0]
given by the following equations: and\ varies \*/vith very smalke. At the beginning, the system
follows the Z[\(t)] adiabatically. But whem reachesh,
=(y?+1)%2, the adiabatic evolution is destroyed with a
jump of action(the action changes to a finite value from zero
suddenly at the pointz.(~0.5048. Figure 1a) shows this

The number of fixed points depends on the nonlinear parank ocess. Obviously, the breakdown of the adiabatic condition
eter \. For weak nonlinearityh <1, there exist only twWo |o54s to the destructon of the adiabatic evolution.

fixed points, corresponding to the local extreme points of the  case 2(y=0): From Egs.(6) and (9), we can have two
classical Hamiltonian. They are elliptic points located ONgjliptic fixed points on lineg" =0 for)\>,1
lines =0 and m, respectively, each being surrounded by '

rﬁ_e (Z =z, =0). At this point, the adiabatic condition will
reak down.

*
*

0

0, m Y-\ +—=—=cosd =0. (9)
Vl-z

closed orbits. For strong nqnlineariﬂy> 1, two more fixed z’; = +V1-1A% 6 =0, Qp= W(\2-1), (11
points appear on the lin@ =0 in the windows -, <y ) ] )
<. one is elliptic and the other is hyperbolic as a saddle?Nd forh<1, there is only one fixed point,
i i itoni —(\2/3_1)3/2 . . —
point of the classical Hamiltonian, whesg=(\“°-1)"< In 720, 6=0, Qy=VI-\. 12)

the following, we only consider the cases in the regiop
<y<w.

Obviously, forz,=0 and\.=1.0, Q,=0, so the adiabatic

We can obtain the frequencies of the fixed points by lin-condition cannot be satisfied. We integrate the classical equa-

earized Eqs(7) and(8). For the elliptic fixed points on line

6" =0, the frequencies are equal. They are

tions of the Hamiltonian systeii®), with the initial condition
No=2, Zy=Z,(\g), and #(0)=0. Figure 1b) shows the time
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= Numerical calculation plitude of the final state on the sweeping rate
0 0.06 /x" B for the Case 2. The initial state and parameters
> are the same as in Fig(k) except for the sweep-
ing rate. The solid quadrangles are our numerical
0.04 - . S . .
calculations. The solid line of the inset is the
function 0.7 a2
0.02 -
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evolution of this fixed point for a very small sweeping rate  furcation, i.e., the poinzf: is just a bifurcation point of the
The final state is a very small oscillation around the fixedfixed points. The properties of the fixed points are deter-
point (z'=0,6"=0). In Fig. 2, we plot the dependency of the mined by the following Jacobian:

small oscillation amplitudeS on the sweeping rate. From

this figure, it is clear to see that the amplitude of the small 19;151 5;452

oscillation will tend to zero with the sweeping rate decreas- dz 9z

ing as a power law5=0.7X a2 Therefore, for this case, D = det 1 .2 , (13
. ! . . A~ I

the system will evolve adiabatically and keep the action un- - =

changing for the whole time if the sweeping rate is small a9 0 (Z,0

enough, even whem crosses the critical poink.=1, at
which Q4(z,)=0, i.e., even though the adiabatic condition is
not satisfied when crosses the poink.=1, the system is e , . X
still undergoing adiabatic evolution. the zero point is a'blfurcatl'on point. Lo

In fact, if we make the series expansion of the Hamil- There are two kinds of bifurcation points: limit points and

tonian (6) around the critical point, the system can be ap-Pranch points. The limit point satisfies tHat=0 but

where ¢(z, 6) =(dH/dz,—oH /1 36). If the JacobiarD # 0, the
zero point(fixed poind is a regular point. But whe® =0,

proximated to a double-well syster@0]. Therefore, the phe- It od?
nomenon of case 2 can be illustrated by the standard double- —_—
well model. Considering a particle in a double well, the D! = det I\ O\ 20
system is described by the Hamiltoniate1/2p?—1/2ux? Pt ag? ’
+1/4x*. For >0, it has two stable fixed point$x,p) 90 06

=(Vu,0) and (x,p)=(-Vu,0), and an unstable fixed point 70

(x,p)=(0,0); for u<0, it has a single stable fixed point which corresponds to generation and annihilation of the fixed
(x,p)=(0,0). At the critical pointu=0, three fixed points points.

merge into a stable fixed point. As the paramegievaries If D Z.0~ D! (22,0):0, the point(z;,O) is a branch point.
from +1 to -1, the system goes from a double well to aThe branch point corresponds to the branch process of the

single well. The stable fixed points are just the bottom of thefixed points. The directions of all branch curves are deter-
wells, and the unstable point is just the saddle point of thenined by the equationgl4]
double well. If the particle is at the fixed poittu,0) at the )
beginning, i.e., if the particle stays at the bottom of one well, Ad_z + ZBd—Z +C=0 (14)
then letu vary very slowly. At the critical poinfu=0, the dZ? d¢
two wells merge into a single well. At this time, the bifurca-
tion point is(x,p)=(0, 0), which is the bottom of the single
well. So if u varies very slowly, one can imagine that the d’¢ d¢
particle will stay at the bottom of the well all the time, even Cig T8y, A0 (15
when the system goes from a double well to a single (@he
this time the adiabatic condition does not hold but the bifur-whereA, B, andC are three constantg.corresponds ta or
cation point is still a stable fixed point, because the bifurca-y, respectively. Different solutions of the above equations
tion point still corresponds to the bottom of the well correspond to different branch processes.

As we have discussed in Sec. II, the breakdown of the For the zero pointz',0), i.e., the fixed point on ling"
adiabatic conditior{{2,=0) corresponds to the trajectory bi- =0, we can obtainD=-\1-7"? Qg .0 Obviously, when
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0,=0,D=0, the critical poin(z;,O) is a bifurcation point, at IV. CONCLUSION

which the adiabatic condition fails. In summary, at some critical points, the adiabatic condi-

ForLtazcatzse 1, we can f'”ld at the—pczm@tthe Jacobian o fajls, but the adiabatic evolution may not always be
D=-V1-22 Qg =0, but D'= -sy1-2' 5 #0. This  proken. We find that the topological property of the critical
point is a limit point which corresponds to annihilating zero point plays an important role for adiabatic evolution of the
points. At this point, the elliptic point annihilates simulta- fixed points when the adiabatic condition does not hold. If
neously with a hyperbolic point. In Fig(d), the dashed lines the topological index of the critical point is +1, the adiabatic
are the trajectory of the hyperbolic point. Apparently, theevolution of the fixed point will not be destroyed. On the
elliptic point evolves adiabatically until it annihilates with contrary, if the index of the critical point is zero or -1, the
the hyperbolic point az.. After this annihilation, the elliptic ~adiabatic evolution will be destroyed. As a paradigmatic ex-
point turns to an ordinary closed orbit with a nonzero action@mple, we investigated the adiabatic evolution of a classical
so the adiabatic evolution is destroyed. The annihilation proHamiltonian system which has a number of practical inter-
cess of the fixed points of the systdB) has also been dis- ©€StS. For.th|s system, the aQ|abat|C|ty breaks dovyn_ at bn‘ur—
cussed in Ref[27] in detail. cation points pf the flx'ed points, but only for the limit point

For the case 2, at the poiﬁ;zo, the Jacobian determinant 'S the f_:ldlab_atlc evol_utlon _destroyed. For the brar_lch process,
D=0, andD'= —z\s’ﬁk{ 5=0. This is a branch process of the_ adlgbanc eV(_)Iut|(_)n will hold, and the corrections to the

i ) c ) adiabatic approximation tend to zero with a power law of the
the fixed points. We can prove that for this c#seC=0, so

. : ~~ 27 sweeping rate.
the solutions of Eqgs(14) and (15) give two directions: In general, the corrections to the adiabatic approximation

dz/d\=0 andd\/dz=0. The branch process corresponds t05re exponentially small in the adiabaticity parameter, both
the merging process. At this branch point, three fixedfor 3 quantum system and a classical sysfdm3]. It is
points—two elliptic points and one hyperbolic point—merge particularly interesting that the corrections of the adiabatic
together. One can see this point in Figb)l in which the  approximation may be a power la.g., for the case)2The
dotted line is the trajectory of the hyperbolic point, and thepower-law corrections to the adiabatic approximation have
dashed line corresponds to the trajectory of another ellipti@lso been found in the nonlinear Landau-Zener tunneling
point. Since the total topological index is invariant, the threg16]. In Ref.[16], the authors found that when the nonlinear
fixed points merge to one point with index +1, i.e., theyparameter is smaller than a critical value, the adiabatic cor-
merge to an elliptic point. The elliptic point evolves adiabati- rections are exponentially small in the adiabatic parameter,
cally until it reaches the critical poirg, at which three fixed but when the nonlinear parameter is equal to the critical
points merge to one elliptic point. Therefore, after the branctvalue, the adiabatic corrections are a power law of the adia-
process, the elliptic point turns to a new elliptic point, thebatic parameter. Furthermore, if the nonlinear parameter is
action remains zero, and the adiabatic evolution still holds.arger than the critical value, the so-called nonzero adiabatic
From the above discussion, we see that the adiabaticidpnneling will occur[16,17). Indeed, the cases for which the
breaks down at bifurcation points of the fixed points, butCorrections to the adiabatic approximation are not exponen-
only for the limit point is the adiabatic evolution destroyed t_'a.l law W.'th the _adlabatlc parameter correspond to the col-
(case 1, while for this case the two fixed points annihilate. ISion of fixed points.
For case 2, three fixed points merge to one, because the
critical point (z;,O) is still a stable fixed point and the adia-
batic evolution remains with action zero. This work was supported in part by National Nature Sci-
The phenomena discussed above can occur for the adiance Foundation of China under Grants No. 10474008 and
batic change ofy with \ fixed. On the other hand, the Hamil- No. 10445005, and a grant of Science and Technology Funds
tonian (6) is invariant under the transformations—-\, §  of CAEP. L.B.F. is indebted to Dr. Chaohong Lee and Alexey
— 6+, andt— —t. Hence, the phenomena can also be foundPonomarev for reading this paper, and acknowledges funding
under such transformations. by the Alexander von Humboldt Stiftung.
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